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Abstract. In this paper, we propose an algorithm for solving a linear program with an additional rank-
two reverse convex constraint. Unlike the existing methods which generate approximately optimal
solutions, the algorithm provides a rigorous optimal solution to this nonconvex problem by a finite
number of dual pivot operations. Computational results indicate that the algorithm is practical and
can solve fairly large scale problems.
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1. Introduction

In this paper, we describe a method for solving a special class of reverse convex
programs [5, 21]:

maximizefcTx j x 2 X \ Y g; (1.1)

where c 2 R
n , and X � R

n is a polytope. The reverse convex set Y � R
n is

defined below by a function f : Rn ! R, which is strictly quasiconcave and has
rank-two monotonicity on an open convex set X� including X:

Y = fx 2 X�

j f(x) � 0g:

Since Y is the complement of a convex set fx 2 X�

j f(x) > 0g relative to X�,
the feasible region might be neither convex nor connected. Therefore, the objective
function of (1.1) can have multiple local maxima in X \ Y , many of which fail
to be globally optimal. The detailed definition of rank-two monotonicity will be
given in section 2 (see also [12, 18, 23]).

A typical example of (1.1) is a linear program with an additional linear multi-
plicative constraint [15, 20, 24]:

maximizefcTx j x 2 X; (dT
1x+ d10)(d

T
2x+ d20)� d00 � 0g; (1.2)
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248 T. KUNO AND Y. YAMAMOTO

where di 2 R
n , i = 1; 2, di0 2 R, i = 0; 1; 2, and X is assumed to be included

in X� = fx 2 R
n
j dT

i x + di0 > 0; i = 1; 2g. The product of two affine
functions appears in many applications such as microeconomics [4], bond portfolio
optimization [8] and geometrical optimization [11, 14] and so forth (see [10, 17]).
In [15, 24], we proposed a branch-and-bound algorithm for generating an �-optimal
solution. We reduced (1.2) to a problem of minimizing a univariate function, whose
values we computed by solving convex programs. In [16], we extended this idea
and solved more general class of problems than (1.2). In [20], Thach et al. converted
(1.2) into a two-dimensional concave minimization problem and applied an outer
approximation algorithm.

As regards the problem (1.1), Pferschy and Tuy developed a promising algorithm
to generate an �-optimal solution in [18]. Their algorithm based on an approach
in [21] consists mainly of two procedures: the first one moves from vertex to
vertex along edges of X and finds a local maximum x0; the second one checks
the �-optimality of x0 by minimizing the constraint function f . Due to the rank-
two monotonicity, one can minimize f very efficiently using any one of parametric
simplex algorithms, e.g. proposed in [9, 13, 23]. Ifx0 turns out not to be an �-optimal
solution, a cutting plane constraint cTx � cTx0+� is added to exclude those points
with objective function values less than cTx0+ �. Our algorithm contrasts with the
method by Pferschy and Tuy in two points: using no cutting planes and yielding a
globally optimal solution within finitely many steps.

The organization of the paper is as follows. In section 2, we parametrize (1.1)
by introducing a vector � of two auxiliary variables. We show that an optimal
solution to the resulting linear program solves (1.1) only if � lies in some set ��

associated with the boundaries of X and Y . In section 3, to search each connected
subset of ��, we apply a parametric dual simplex algorithm to the linear program.
In section 4, using this algorithm as a procedure, we locate a point providing a
globally optimal solution to (1.1) in the whole of ��. Computational results of the
algorithm are reported in section 5.

2. Parametrization of the problem

The nonconvex program we consider in this paper is

[P]

������
maximize cTx

subject to Ax = b; x � 0;

f(x) � 0;

where A 2 R
m�n , b 2 R

m and c 2 R
n . We assume that

X = fx 2 R
n
j Ax = b; x � 0g
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RANK-TWO REVERSE CONVEX PROGRAM 249

is a nonempty and bounded subset of an open convex setX�

� R
n . The constraint

function f : Rn ! R is continuous and strictly quasiconcave on X�, i.e. for each
x, y 2 X� with f(x) 6= f(y) we have

f((1� �)x+ �y) > minff(x); f(y)g for any � 2 (0; 1). (2.1)

We also assume f to possess rank-two monotonicity onX� with respect to linearly
independent vectors d1, d2 2 R

n [12, 18, 23]. Namely, for each x, y 2 X�,

dT
i x � dT

i y for i = 1; 2 implies that f(x) � f(y). (2.2)

Let

Y = fx 2 X�

j f(x) � 0g:

The feasible region of [P], denoted by X \ Y , is the difference of a polytope X
and an open convex set X�

n Y . If we remove the last constraint f(x) � 0, we
have an ordinary linear program:

[�P] maximizefcTx j x 2 Xg;

which has an optimal solution �x because X is nonempty and bounded. If �x 2 Y ,
then �x is globally optimal to [P]. To exclude such a trivial case, we assume
throughout the paper that

maxfcTx j x 2 Xg > maxfcTx j x 2 X \ Y g: (2.3)

REMARK. Condition (2.3) can be checked easily. Let �X = X \ fx 2 R
n
j

cTx = cT�xg. Then �X contains no points satisfying f(x) � 0 if and only if (2.3)
holds. Therefore, we have only to minimize f(x) over �X . Due to the rank-two
monotonicity of f , this can be done by parametrically solving�����

minimize (1 � �)dT
1x+ �dT

2x

subject to Ax = b; cTx = cT�x; x � 0;

and evaluating f at the vertices encountered (see [23] for further details).

Let us denote by @Y the set of boundary points of Y relative to the topology
induced on X�. Since f is continuous and strictly quasiconcave, the level surface
L0 = fx 2 X�

j f(x) = 0g coincides with either @Y or the upper level set
L+ = fx 2 X�

j f(x) � 0g (see e.g. Proposition 3.31 in [1]). If L0 = L+, then

Y = fx 2 X�

j f(x) � 0g = L0 [ fx 2 X
�

j f(x) < 0g

= L+ [ fx 2 X
�

j f(x) < 0g = X�;

which contradicts (2.3). Hence, we have

@Y = fx 2 X�

j f(x) = 0g: (2.4)

We also denote by S(X) the one-dimensional skeleton ofX , i.e. the union of edges
and vertices of X . Under condition (2.3), we have the following theorem, which
holds for linear programs with a general reverse convex constraint as well:
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250 T. KUNO AND Y. YAMAMOTO

THEOREM 2.1. IfX\Y 6= ;, thenX\@Y contains all globally optimal solutions
to [P], at least one of which lies on S(X) \ @Y .

Proof. Follows from Corollary 2.1 in Tuy [21] and Proposition IX.11 in Horst
and Tuy [7] (see also [6, 22]). �

The vectors d1 and d2 characterizing the constraint function f transformX and
X� respectively into

� = f(dT
1x;d

T
2x) j x 2 Xg; �� = f(dT

1x;d
T
2x) j x 2 X

�

g:

In the space of ��, we can have an insight into the rank-two monotonicity of f .

LEMMA 2.2. There exists a function g : R2
! R which is continuous, strictly

quasiconcave on �� and satisfies the following:

f(x) = g(dT
1x;d

T
2x) for x 2 X�; (2.5)

g(�) � g(�) if �;� 2 �� and � � �. (2.6)
Proof. If f is not expressed as (2.5), there are two distinct points x1 and x2 in

X� such that

dT
i x

1 = dT
i x

2; i = 1; 2; f(x1) 6= f(x2):

We may assume without loss of generality that f(x1) < f(x2). Then it follows
from (2.2) that

9i; dT
i x

1 < dT
i x

2;

which is a contradiction. Hence, (2.5) holds for some function g : R2
! R.

Let �;� 2 ��. Also, let x and y be points in X� satisfying � = (dT
1x;d

T
2x)

and � = (dT
1y;d

T
2y), respectively. If � � �, then

g(�) = f(x) � f(y) = g(�)

and (2.6) is yielded. If g(�) < g(�), by the strict quasiconcavity of f we have

g((1 � �)� + ��) = f((1� �)x+ �y) > f(x) = g(�); 8� 2 (0; 1);

which implies the strict quasiconcavity of g on ��. The continuity of g can easily
be checked. �

By exploiting the function g and by introducing a vector � of two auxiliary variables
�1 and �2, we can transform [P] into an equivalent form:

[MP]

�������
maximize cTx

subject to x 2 X; g(�) � 0;
dT

1x = �1; d
T
2x = �2:

The following is an immediate consequence:
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LEMMA 2.3. If (x�; ��) is an optimal solution to [MP], then x� solves [P].

Let

H = f� 2 �� j g(�) � 0g;

and let @H denote the boundary of H relative to ��. In the same way as we have
seen for @Y , the strict quasiconcavity of g leads to

@H = f� 2 �� j g(�) = 0g:

Note that the slope of the tangent to @H is always nonpositive by the mono-
tonicity property (2.6). We also see for x 2 X� that x 2 @Y if and only if
� = (dT

1x;d
T
2x) 2 @H. If we fix the values of �1 and �2 in [MP], we have a linear

program:

[P(�)]

�������
maximize cTx

subject to x 2 X;

dT
1x = �1; d

T
2x = �2:

We refer to � as an active point if [P(�)] is feasible and � lies on@H. Let�� = �\@H
and let x�(�) be an optimal solution to [P(�)] if � 2 �. Then the observations
made so far are summarized into the following:

THEOREM 2.4. Let x� = x�(��) be a point which maximizes cTx�(�) over all
� 2 ��. Then x� is a globally optimal solution to [P].

Problem [P] can therefore be solved if we solve the linear program [P(�)] as
varying � over all active points. This could be done rather easily if the curve
@H is parametrized by a single parameter, e.g. an explicit function  such that
�2 =  (�1) is known for � = (�1; �2) 2 @H. However, such a favorable situation
is not expected in general. What is even worse, the set �� of active points may not
be connected.

In the rest of the paper, we impose a nondegeneracy assumption for the sake of
simplicity.

ASSUMPTION 2.1. Problem [P] satisfies the following three conditions:
(i) Matrix A has full rank. Any subset of columns of [A; b] has full rank if the

corresponding submatrix of A has.
(ii) Any submatrix of [AT; c;d1;d2] has full rank if the corresponding submatrix

of AT has.
(iii) No vertices of X are boundary points of Y .

Condition (i) implies that the polytopeX has no degenerate vertices; condition (ii)
implies that [P(�)] has a unique optimal solution x�(�) if it exists. We also see
from Theorem 2.1 that no vertices of X are optimal to [P] under condition (iii).
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252 T. KUNO AND Y. YAMAMOTO

3. Search for a locally best active point

We have seen from Theorems 2.1 and 2.4 that a globally optimal solution x� to
[P] will be found if we enumerate all � 2 �� such that x�(�) 2 S(X). To state
this systematically, let us observe the relationship between the active points and
the skelton of X a little more fully.

Let

~A =

2
64
A

dT
1

dT
2

3
75 ; ~b =

2
4 b0

0

3
5 ; e1 =

2
4 01

0

3
5 ; e2 =

2
4 00

1

3
5 :

Given an active point �0, let us consider the linear program

[P(�0)]

�����
maximize cTx

subject to ~Ax = ~b� e1�0
1 � e2�0

2 ; x � 0:

Let B0 2 R
(m+2)�(m+2) be an optimal basis matrix and let

[B0; N0] = ~A;

�
cB
cN

�
= c;

�
xB

xN

�
= x

denote the corresponding partitioned matrix and vectors. We then have an optimal
dictionary of [P(�0)]:

���� xB = �b� �e1�0
1 � �e2�0

2 �
�N0xN

z = cT
B(
�b� �e1�0

1 � �e2�0
2) + �cT

NxN ;
(3.1)

where

�N0 = B�1
0 N0; �b = B�1

0
~b; �cT

N = (cT
N � cT

B
�N0); �ei = B�1

0 ei; i = 1; 2:

Note on dictionary (3.1) that at most one component of �b � �e1�0
1 � �e2�0

2 is zero
and the rest are positive by Assumption 2.1.

As is well known (see e.g. [2, 3]), the basis B0 remains optimal to [P(�)] as
long as � satisfies �b� �e1�1 � �e2�2 � 0. Let

�0 = f� 2 R
2
j �e1�1 + �e2�2 �

�bg:

Then �0 is polyhedral and bounded, since for any � 2 �0 we have

minfdT
i x j x 2 Xg � �i � maxfdT

i x j x 2 Xg; i = 1; 2:

Moreover, �0 has a nonempty interior and hence is of two-dimension even if (3.1)
is degenerate. In fact, if the sth component of �b � �e1�0

1 � �e2�0
2 is zero, then for a

sufficiently small � > 0 we have

�e1(�0
1 � ��e1

s) + �e2(�0
2 � ��e2

s) <
�b:
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Between the polygon �0 and a two-dimensional face of X exists a one-to-one
correspondence. Let

F0 = fx 2 R
n
j x = x�(�); � 2 �0g:

We immediately see that F0 is polyhedral and bounded since it is the image of �0

under a linear transformation from R
2 to Rn . We can further show the following:

LEMMA 3.1. Polytope F0 is a two-dimensional face of X .
Proof. For each � 2 �0, the optimal solution x�(�) to [P(�)] lies on the

intersection of n � 2 hyperplanes defined by Ax = b and xN = 0. (Note that
xB 2 R

m+2 andxN 2 R
n�m�2 .) This, together withx�B(�) � 0, implies thatF0 is

a face ofX with dimensionality two at most. However,x�B(�) = �b��e1�1��e2�2 >

0 for � 2 int�0, and besides �e1 and �e2 are linearly independent. We then conclude
that dimF0 = 2. �

We refer to �0, a polyhedral subset of �, as a cell of � associated with the basis
B0. Obviously, � is a vertex of �0 if and only if x�(�) is a vertex of F0. This
implies that each � 2 S(�0) \ @H provides a candidate x�(�) 2 S(X) \ @Y for
an optimal solution to [P].

3.1. GENERATION OF A SEQUENCE OF ACTIVE POINTS

Let us proceed to the procedure for generating a sequence of active points �1, �2,
. . . , each of which satisfies x�(�i) 2 S(X). For an interval 
 of real numbers let

�(
) = � \ f� 2 �� j �1 2 
g: (3.2)

The procedure starts from a given active point �1
2 S(�0)\ @H and visits distinct

�js successively in �([�1
1 ; �!]) \ @H for some number �! � �1

1. The way to obtain a
starting active point �1 will be discussed in the next section.

Since the cell �0 is a convex polygon defined by m + 2 half planes, we can
generate all the vertices in timeO(m logm) using computational geometry (see e.g.
[19]). Let �1, . . . , �p, �p+1 (= �1) denote the vertices of �0 in counterclockwise
order from �1. Suppose the edge �p–�1 contains a point in �� n H. Then we have
either of the following under condition (iii) of Assumption 2.1:

case 3.1: g((1 � �)�p + ��1) < 0 for any � 2 [0; 1);

case 3.2: g((1 � �)�1 + ��1) < 0 for any � 2 (0; 1].

In case 3.2, moving alongS(�0) counterclockwise from �1, we choose as �2 the
last point where the value of g is nonpositive. Let �k–�k+1 be the edge containing
�2. Then

g((1 � �)�i + ��i+1) � 0; 8� 2 [0; 1]; i = 1; . . . ; k � 1;
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254 T. KUNO AND Y. YAMAMOTO

and for �k–�2–�k+1 we have

g((1 � �)�k + ��2) < 0; 8� 2 [0; 1);

just as in case 3.1 for �p–�1–�1. The active point �2 newly found satisfies �2
1 � �1

1
and �2

2 � �1
2, but is never equal to �1 because �0 is of two-dimension.

LEMMA 3.2. In case 3.2, no x�(�) 2 S(X) with � lying on @H between �1 and
�2 can be optimal to [P], except for x�(�1) and x�(�2).

Proof. If an edge �q–�q+1 (k < q < p) intersects @H between �1 and �2, the
line segment �1–�2 does not entirely lie in �0, which contradicts the convexity of
�0. This piece of @H is therefore included in �0 and has intersections with only the
edges �p–�1 and �i–�i+1, i = 1; . . . ; k. Suppose �r–�r+1 (1 � r < k) touches
@H at �0. Then, by Assumption 2.1 (iii), we have

g(�r) < 0; g(�r+1) < 0; g(�0) = 0:

We see from Lemma 3.1 thatx�(�0) lies on an edge connecting two verticesx�(�r)
and x�(�r+1) of X . Both the vertices, however, lie in intY , and hence neither is
optimal to [P] by Theorem 2.1. Since cTx�(�0) � maxfcTx�(�r); cTx�(�r+1)g

holds, x�(�0) is not optimal, either. �

Let us now turn to case 3.1. If we replace �0 by �1 in dictionary (3.1), then for
the sth row corresponding to �p–�1 we have

�bs � �e1
s�

1
1 � �e2

s�
1
2 = 0:

Selecting a variable to enter the basis appropriately from nonbasic variables and
performing a single dual pivot operation, we obtain an alternative basis matrix B1,
which is also optimal to [P(�1)]. The cell �1 associated with B1 shares the edge
�p–�1 with �0. Therefore, the rest of the procedure is the same as in case 3.2. If
we cannot find any entering variables, i.e.

(es)T �N0 � 0; (3.3)

then x�(�1) is a maximum point of �1d
T
1x+ �2d

T
2x over X , where �1 = �1

2 � �
p
2

and �2 = �
p
1 � �1

1. In other words, the edge �p–�1 determines a supporting line of
� = f(dT

1x;d
T
2x) j x 2 Xg; and � is included in

� = f(� 2 �� j (�1; �2)(� � �1) � 0g:

LEMMA 3.3. Suppose (3.3) holds in case 3.1. Then
(i) �((�1

1 ;+1)) \ @H = ; if �1
1 � �

p
1 (and �1

2 � �
p
2 );

(ii) �((�1
1 ; � + �]) \ H = ; for some � > 0 otherwise.
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Proof. (i) Suppose �1
1 < �

p
1 ; otherwise, the assertion is obvious. In case 3.1,

we have �((�1
1 ; �

p
1 ]) \ @H = ;. Let us assume that g(�0) = 0 for some �0 2

�((�
p
1 ;+1)). Then �0 2 �, and hence we have �02 � �1

2 � (�1=�2)(�
0

1 � �1
1) by

noting �2 = �
p
1 � �1

1 > 0. Letting �00 = (�01; �
1
2 � (�1=�2)(�

0

1 � �1
1)), we have

g(�00) � 0 by the monotonicity of g. Then �p, a convex combination of �00 and �1,
satisfies

g(�p) > minfg(�00); g(�1)g � 0;

which is a contradiction.
(ii) We have supposed that �p–�1 contains a point, say �0, in �� n H. Taking
� = �01 � �1

1 leads to the assertion. �

If (ii) holds in Lemma 3.3, we have to continue to search �((�1
1 ;+1]) for other

active points, by using the procedure which will be developed in the next section.

3.2. PROCEDURE FOR FINDING A LOCALLY BEST ACTIVE POINT

Let us summarize the procedure. It receives an active point �1 such that x�(�1)

lies on some edge of X containing a point in X�

n Y , and then returns a number
�! � �1

1 and the best active point �� in the set �([�1
1 ; �!]). Let

M = maxfdT
1x j x 2 Xg:

procedure LOCAL(�1);
begin
j := 1 and �� := �j;
compute an optimal basis matrix Bj�1 of [P(�j)] and the associated cell �j�1;
let �1, . . . , �p denote the vertices of �j�1 in counterclockwise order from �j ;
if g((1 � �)�j + ��1) < 0 for any � 2 (0; 1] then begin

move along S(�j�1) counterclockwise from �1 and choose as �j+1 the last
point where the value of g is nonpositive;
let Bj := Bj�1, �j := �j�1 and j := j + 1;
if cTx�(�j) > cTx�(��) then update �� := �j

end;
stop := false;
while stop = false do begin

choose a fundamental vector es such that (es)TB�1
j�1(

~b� e1�
j
1 � e2�

j
2) = 0;

if (es)TB�1
j�1Nj�1 � 0 for the nonbasic columns Nj�1 then stop := true

else begin
perform a dual pivot operation at the sth row in the dictionary with respect
to Bj�1;
let �j denote the cell associated with the new basis Bj and �1, . . . , �p

the vertices of �j in counterclockwise order from �j ;
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move along S(�j) counterclockwise from �1 and choose as �j+1 the last
point where the value of g is nonpositive;
j := j + 1;
if cTx�(�j) > cTx�(��) then update �� := �j

end
end;
if �1

1 � �
p
1 then return (M; ��)

else return (�
j
1;
��)

end;

LEMMA 3.4. Under Assumption 2.1, procedure LOCAL terminates after finitely
many iterations and returns a number �! � �1

1 and an active point ��, which provides
the best incumbent x�(��) among all � 2 �([�1

1 ; �!]) \ @H.
Proof. The procedure generates a sequence, (�0,) �1, �1, �2, . . . , �t�1, �t,

until (es)TB�1
t�1Nt�1 � 0 holds. Some �js may appear more than once but no �js

do. By the convexity of �� n H, each edge of �js can intersect @H not more than
twice. This implies that each edge of X contains two of x�(�j)s at most. Since X
has only a finite number of edges, the number of �js is finite as well. We also see
from Lemmas 3.2 and 3.3 that except for �js no � 2 �([�1

1 ; �!]) \ @H can provide
an optimal solution to [P]. �

4. Search for a globally optimal solution to [P]

To generate a sequence of active points, procedure LOCAL requires a starting
active point �1 such that x�(�1) 2 S(X). In this section, we will develop two
procedures for supplying LOCAL with such an active point.

For an interval 
 let

X(
) = X \ fx 2 X�

j dT
1x 2 
g;

like �(
) defined in (3.2). We simply write X(!) and �(!) for a degenerate
interval 
 = [!; !]. When searching for a starting active point, the following two
parametric linear programs play important roles:

[C(!)]
���� maximize cTx

subject to x 2 X(!);
[D(!)]

�����
minimize dT

2x

subject to x 2 X(!):

Under condition (ii) of Assumption 2.1, both the problems have a unique optimal
solution unless X(!) is an empty set. Let xC(!) and xD(!) denote the optimal
solutions to [C(!)] and [D(!)], respectively, and let

hC(!) = dT
2x

C(!); hD(!) = dT
2x

D(!):

For any ! with X(!) 6= ;, by the monotonicity of g, we have

g(!; hD(!)) � g(!; hC(!)):
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LEMMA 4.1. SupposeX(!) 6= ;. Then
(i) �(!) \ H = ; if g(!; hD(!)) > 0;
(ii) �(!) \ @H 6= ; if g(!; hD(!)) � 0 � g(!; hC(!));
(iii) no x�(�) with � 2 �(!) is optimal to [P] if g(!; hC(!)) < 0.

Proof. (i) For an arbitrary �0 2 �(!), there is some x0 2 X(!) such that
dT

2x
0 = �02. Since hD(!) � dT

2x for all x 2 X(!), we have 0 < g(!; hD(!)) �

g(!;dT
2x

0) = g(�0) by the monotonicity of g. Hence, �0 cannot be a point in H.
(ii) Obvious.
(iii) The optimal solutionxC(!) to [C(!)] satisfies f(xC(!)) = g(!; hC(!)) < 0.
Hence, xC(!) is feasible but not optimal to [P] by Theorem 2.1. Also, cTxC(!) �

cTx for all x 2 X(!), which implies that x�(�) is not optimal to [P] for any
� 2 �(!). �

Given a number !1 such that X(!1) 6= ;, we can obtain an active point �1 with
�1

1 > !1 by solving either [C(!)] or [D(!)] parametrically. We will show that no
� 2 @H with �1 2 (!1; �1

1) provides an optimal solution to [P].

4.1. ROLE OF PROBLEM [C(!)]

Let us consider

case 4.1: X((!1; !1 + �]) \ Y 6= ; for any � > 0.

As will be seen later, the procedure below is applied to this case only when (iii) of
Lemma 4.1 holds for ! = !1; therefore, we suppose here that g(!1; hC(!

1)) < 0.
If we increase the value of ! from !1 and solve [C(!)] by using a parametric

right-hand-side simplex algorithm, a sequence of intervals [!1; !2], . . . , [!q; !q+1],
and associated bases B0

1, . . . , B0

q will be generated, where B0

i 2 R
(m+1)�(m+1) is

optimal to [C(!)] for all ! 2 [!i; !i+1] and !q+1 = M (= maxfdT
1x j x 2 Xg).

For each i = 2; . . . ; q + 1, the optimal solution xC(!i) is a vertex of X . There are
two subcases under condition (iii) of Assumption 2.1:

g(!i; hC(!
i)) < 0; i = 2; . . . ; q + 1; (4.1)

g(!i; hC(!
i)) < 0; i = 2; . . . ; k (� q); g(!k+1; hC(!

k+1)) > 0: (4.2)

LEMMA 4.2. In both (4.1) and (4.2), if

g(!i; hC(!
i)) < 0; i = 2; . . . ; ` (� q + 1);

then no x�(�) with � 2 �((!1; !`]) is optimal to [P].
Proof. We see from Lemma 4.1 (iii) that no x�(�) with �1 2 f!2; . . . ; !`g is

optimal. If there is an active point �0 with �01 2 (!i; !i+1), then

maxfcTxC(!i); cTxC(!i+1)g � cTxC(�01) � cTx; 8x 2 X(�01):

Hence, no � 2 �((!1; !`]) provides an optimal solution. �
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If (4.2) holds, we choose as �1 an intersection of (!k; hC(!
k))–(!k+1; hC(!

k+1))

and @H. By the convexity of �� n H, we can show that �1 is a unique intersection.
From Lemma 4.1 (iii), no � 2 �((!k; �1

1)) provides an optimal solution. We then
have x�(�1) = xC(�1

1), which lies on an edge xC(!k)–xC(!k+1) of X . Since one
end of this edge is a point in X�

n Y , procedure LOCAL can start from the active
point �1.

The procedure for finding a starting active point in case 4.1 is summarized to
the following:

procedure START1(!1);
begin
i := 1 and stop := false;
while stop = false do begin

compute a basis matrix B0

i and a number !i+1 such that B0

i is optimal to
[C(!)] for all ! 2 [!i; !i+1];
if g(!i+1; hC(!

i+1) > 0 then begin
let �1 be the intersection point of (!i; hC(!

i))–(!i+1; hC(!
i+1)) and @H;

stop := true
end
else if !i+1 =M then �1 := (!i+1; hC(!

i+1)) and stop := true
else i := i+ 1

end;
return �1

end;

4.2. ROLE OF PROBLEM [D(!)]

The rest to be considered is

case 4.2: X((!1; !1 + �]) \ Y = ; for some � > 0.

Note from Lemma 3.3 that we have case 4.2 at !1 = �! if LOCAL returns �! < M .
As before, we solves [D(!)] for all ! 2 [!1;M ] and generates a sequence of

intervals [!1; !2], . . . , [!q
0

; !q
0+1], where !q

0+1 = M . There are two subcases
again:

g(!i; hD(!
i)) > 0; i = 2; . . . ; q0 + 1; (4.3)

g(!i; hD(!
i)) > 0; i = 2; . . . ; k (� q0); g(!k+1; hD(!

k+1)) < 0: (4.4)

LEMMA 4.3. In both (4.3) and (4.4), if

g(!i; hD(!
i)) > 0; i = 2; . . . ; ` (� q0 + 1);

then �((!1; !`]) \ H = ;.

jogo392.tex; 5/05/1998; 14:28; v.7; p.12



RANK-TWO REVERSE CONVEX PROGRAM 259

Proof. For each i = 2; . . . ; `, the segment (!i; hD(!
i))–(!i+1; hD(!

i+1)) is
included in the open convex set �� n H. Hence, g(!; hD(!)) > 0 for any ! 2

[!i; !i+1]; and the assertion follows from Lemma 4.1 (i). �

If (4.4) holds, we choose as �1 an intersection of (!k; hD(!
k))–(!k+1; hD(!

k+1))

and @H. Then we have x�(�1) = xD(�1
1) lying on an edge xD(!k)–xD(!k+1) of

X . As in case 4.1, the intersection �1 is unique, and no � 2 �((!k; �1
1)) provides

an optimal solution to [P].
The procedure for finding a starting active point in case 4.2 is as follows:

procedure START2(!1);
begin
i := 1 and stop := false;
while stop = false do begin

compute a basis matrix B00

i and a number !i+1 such that B00

i is optimal to
[D(!)] for all ! 2 [!i; !i+1];
if g(!i+1; hD(!

i+1)) < 0 then begin
let �1 be the intersection of (!i; hD(!

i))–(!i+1; hD(!
i+1)) and @H;

stop := true
end
else if !i+1 =M then �1 := (!i+1; hD(!

i+1)) and stop := true
else i := i+ 1

end
return �1

end;

4.3. ALGORITHM FOR FINDING AN OPTIMAL SOLUTION TO [P]

We are now ready to present the whole algorithm for computing a globally optimal
solution x� to [P]. It consists of procedure LOCAL in section 3.2 and the above
two procedures.

algorithm GLOBAL;
begin fphase 1: find an initial active point �1

g

let x1 := arg minfdT
1x j x 2 Xg and !1 := dT

1x
1;

if g(!1; cTx1) < 0 then call START1(!1) to obtain �1

else call START2(!1) to obtain �1;
if �1

1 < M then
begin fphase 2: find a globally optimal solution x� to [P]g

�� := �1 and stop := false;
while stop = false do begin

call LOCAL(�1) to obtain (�!; ��);
if cTx�(��) > cTx�(��) then update �� := ��;
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if �! =M then stop := true
else begin

call START2(�!) to obtain �1;
if �1

1 =M then stop := true
end

end;
x� := x�(��)

end
end;

We should note that procedure START1 is not called in phase 2. We see from
Lemma 3.3 that case 4.2 occurs at !1 = �! whenever LOCAL returns �! < M .
Therefore, after calling LOCAL, algorithm GLOBAL does not need START1 any
more.

THEOREM 4.4. Under Assumption 2.1, algorithm GLOBAL terminates after fi-
nitely many iterations and yields a globally optimal solution x� of [P] if it exists.

Proof. By Assumption 2.1 (ii), both procedures START1 and START2 are finite
and either of them returns a point �1 in phase 1. From Lemmas 4.2 and 4.3, no
� with �1 < �1

1 provides an optimal solution. If �1
1 attains M = maxfdT

1x j x 2

Xg, then it must be yielded by START2(!1) under condition (2.3). In that case,
g(!; hD(!)) > 0 for all ! 2 [!1;M ] and hence [P] has no feasible solutions by
Lemma 4.1 (i).

In phase 2, procedure LOCAL returns a number �! � �1
1 and the best incumbent

�� in �([�1
1 ; �!])\@H. Unless �! reachesM , case 4.2 occurs at !1 = �! and START2

is called to search �((�!;M ]) for an alternative �1 with �1
1 > �!. In this way,

LOCAL and START2 scan adjacent intervals covering H� alternately from �1 =

minfdTx j x 2 Xg to �1 = M in the plane of ��. Some of the intervals scanned
by LOCAL may be degenerate but none of those by START2 are. This, together
with Lemma 3.4, implies that phase 2 of GLOBAL is finite and yields a globally
optimal solution x� = x�(��) to [P]. �

4.4. NUMERICAL EXAMPLE

Before concluding this section, let us illustrate algorithm GLOBAL with the fol-
lowing small instance:

�������������

maximize x3

subject to 5x1 + 10x2 + 5x3 � 28
8x1 + 4x2 + 5x3 � 28
�130x1 � 40x2 + 90x3 � 9
x1 � 0; x2 � 0; x3 � 0
(3x1 � x2 + 3)(�x1 + 3x2 + 4)� 18 � 0:

(4.5)
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Figure 1. Three-dimensional example (4.5) of [P].

Let

X� = f(x1; x2; x3)
T
j 3x1 � x2 + 3 > 0; �x1 + 3x2 + 4 > 0g:

Then the product of two affine functions

f(x) = (3x1 � x2 + 3)(�x1 + 3x2 + 4)� 18

is strictly quasiconcave (see e.g. [1]) and has rank-two monotonicity on X� with
respect to d1 = (3;�1; 0)T and d2 = (�1; 3; 0)T. We also see from Figure 1 that
X� includes the polytope

X =

�
x 2 R

3
���� 5x1 + 10x2 + 5x3 � 28; 8x1 + 4x2 + 5x3 � 28
�130x1 � 40x2 + 90x3 � 9; x1 � 0; x2 � 0; x3 � 0

�
:

The function g in Lemma 2.2 is

g(�) = (�1 + 3)(�2 + 4)� 18:

In phase 1, we first solve a linear program: minimizef3x1 � x2 j x 2 Xg.
Then we have x1 = (0:000; 2:800; 0:000)T as its optimal solution. Since f(x1) =

�15:520 < 0 and case 4.1 holds at !1 = dT
1x

1 = �2:800, we need to solve the
following problem in order to obtain an initial active point �1:

������
maximize x3

subject to x 2 X

3x1 � x2 = !:

(4.6)

Procedure START1 solves (4.6) parametrically by increasing the value of ! from
�2:800, and returns the first active point �1 after two pivot operations:

�1 = (�1:131; 5:631); x�(�1) = (0:280; 1; 970; 1:379)T:
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Figure 2. The cell �1 associated with the dictionary (4.8).

In phase 2, we solve the following problem as changing �:������
maximize x3

subject to x 2 X

3x1 � x2 = �1; �x1 + 3x2 = �2:

(4.7)

The optimal dictionary of (4.7) at � = (�1:131; 5:631) is as follows:�������������

x2 = 0:000 + 0:125�1 + 0:375�2

x5 = 27:500� 6:486�1 � 4:236�2 + 0:056x6

x4 = 27:500� 6:111�1 � 6:111�2 + 0:056x6

x3 = 0:100 + 0:597�1 + 0:347�2 � 0:011x6

x1 = 0:000 + 0:375�1 + 0:125�2

z = 0:100 + 0:597�1 + 0:347�2 � 0:011x6;

(4.8)

where x4, x5 and x6 are slack variables. Hence, we define


1 =

8<
:� 2 R

2

������
0:125�1 + 0:375�2 � 0; 6:486�1 + 4:236�2 � 27:5
6:111�1 + 6:111�2 � 27:5; 0:597�1 + 0:347�2 � �0:1
0:375�1 + 0:125�2 � 0

9=
;

(see Figure 2). We obtain the second active point �2 by computing the intersection
of g(�) = 0 and edge �2–�3 of �1. Performing a single dual pivot operation at the
first row of (4.8) corresponding to �2–�3, we have

�2 = (3:000;�1:000); x�(�2) = (1:000; 0:000; 1:544)T:

Since there is no active point � with �1 2 (3:000; 3:000 + �] for sufficiently
small � > 0, case 4.2 holds and we have to solve������

minimize �x1 + 3x2

subject to x 2 X

3x1 � x2 = !:

(4.9)
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Procedure START2 solves (4.9) as increasing the value of! from 3:000, and returns
the third active point:

�3 = (6:000;�2:000); x�(�3) = (2:000; 0:000; 2:400)T:

Starting from �3, procedure LOCAL again solves (4.7) and generate the last active
point:

�4 = (9:857;�2:600); x�(�4) = (3:371; 0:257; 0:000)T:

The maximum of x3 is attained at x�(�3).

5. Computational experiments

We will report computational results of testing algorithm GLOBAL. We coded
GLOBAL and the algorithm proposed by Pferschy and Tuy [18] (abbr. P-T) in
double precision C language, and tested them on a microSPARC II computer (70
MHz). The tolerance � required by algorithm P-T for computing an �-optimal
solution was fixed at 10�5.

The test problem was the following subclass of [P]:
�������

maximize cTx

subject to Ax � b; x � 0

(dT
1x� d10)(d

T
2x� d20)� d00 � 0;

(5.1)

where c, di 2 R
n (i = 1; 2), di0 2 R (i = 0; 1; 2), b 2 R

m and A 2 R
m�n .

To ensure that f(x) = (dT
1x � d10)(d

T
2x � d20) is strictly quasiconcave and

has rank-two monotonicity on X = fx 2 R
n
j Ax � b; x � 0g, we put

�dT
1x � �d10 � 10�5 and �dT

2x � �d20 � 10�5 in the first and second rows
of Ax � b, respectively. Components of c, dis and A except the first two rows
were drawn randomly from a uniform distribution over [�1:000; 1:000], and those
of b except the first two components and di0s were from [0:000; 1:000]. The size
of problems ranged from (m;n) = (100; 120) to (250; 300). For each size we
selected ten instances which were feasible and had no trivial solutions.

Table I shows the average performance of the two algorithms. For each size
of (m;n), the average number of pivot operations and the average CPU time in
seconds (and their respective standard deviations in the brackets) needed to solve
ten instances are listed. The column labeled Type 1 gives the number of primal
pivot operations performed in phase 1; the column labeled Type 2 gives that of
dual pivot operations performed by procedures START1 and START2; and the
column labeled Type 3 gives that of dual pivot operations performed by procedure
LOCAL.

We see from these results that algorithm GLOBAL is rather practical compared
with algorithm P-T for randomly generated instances of (5.1). In particular, the total
number of pivot operations required by GLOBAL is only about 25 % of that by
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Table I. Computational results for (5.1).

algorithm GLOBAL algorithm P-T
m� n # of pivots CPU time # of pivots CPU time

type 1 type 2 type 3 total

100 � 120 16.9 26.8 47.0 90.7 3.970 334.8 8.612
(7.2) (19.0) (28.2) (22.1) (1.425) (260.3) (6.922)

150 � 120 21.3 25.3 61.8 108.4 7.960 456.2 19.888
(6.0) (16.6) (20.5) (26.5) (2.393) (339.7) (15.156)

150 � 150 19.2 44.4 56.0 119.6 10.433 519.3 26.092
(10.3) (34.4) (22.5) (26.9) (3.856) (574.1) (30.198)

150 � 180 38.1 51.1 71.0 160.2 13.662 774.5 41.903
(15.7) (32.1) (32.1) (46.1) (4.328) (1015.9) (56.338)

200 � 180 28.3 64.1 57.4 149.8 19.208 402.1 31.275
(10.5) (34.4) (28.8) (36.9) (7.882) (552.2) (44.087)

200 � 200 24.3 44.8 94.6 163.7 24.257 668.2 56.405
(10.5) (38.7) (37.7) (32.2) (6.684) (827.7) (71.312)

200 � 220 23.1 45.2 81.4 149.7 22.617 586.8 49.437
(13.1) (37.3) (33.0) (41.4) (10.599) (608.9) (53.267)

250 � 220 29.0 64.4 81.6 175.0 33.970 752.9 88.732
(9.6) (46.5) (43.1) (61.5) (14.929) (770.5) (92.617)

250 � 250 37.9 90.7 92.0 220.6 45.585 936.4 117.728
(16.8) (56.2) (25.5) (65.2) (20.188) (1141.2) (147.679)

250 � 300 41.2 70.8 91.0 203.0 45.193 836.5 118.395
(20.2) (38.3) (56.0) (59.2) (17.018) (1085.0) (159.672)

algorithm P-T. Moreover, the variance of the former is far less than the latter. Since
algorithm P-T discards local maxima by cutting off a portion of the feasible region,
unfortunate cuts sometimes delay the convergence considerably. In contrast to this,
algorithm GLOBAL uses no cuts and hence the convergence is relatively stable.
It should also be emphasized that GLOBAL yields rigorous optimal solutions but
not approximate ones.
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