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Abstract. In thispaper, we propose an a gorithm for solving alinear program with an additional rank-
two reverse convex constraint. Unlike the existing methods which generate approximately optimal
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Key words: Globa optimization, Reverse convex program, Rank-two quasiconcave function, Para-
metric simplex algorithm.

1. Introduction

In this paper, we describe a method for solving a special class of reverse convex
programs [5, 21]:

maximize{c'z | € X NY}, (1.2)

where ¢ € R*, and X C R” is a polytope. The reverse convex set Y C R" is
defined below by afunction f : R* — R, which is strictly quasiconcave and has
rank-two monotonicity on an open convex set X ° including X:

Y = {z € X°| f(2) <0}.

SinceY' is the complement of a convex set {z € X° | f(x) > O} relativeto X°,
the feasible region might be neither convex nor connected. Therefore, the objective
function of (1.1) can have multiple local maximain X N'Y, many of which fail
to be globally optimal. The detailed definition of rank-two monotonicity will be
givenin section 2 (seeadso [12, 18, 23]).

A typical example of (1.1) is alinear program with an additional linear multi-
plicative constraint [15, 20, 24]:

maximize{c'x | ¢ € X, (d{z + dio)(dsx + dpp) — doo < 0}, (1.2)
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whered; € R",i = 1,2,djg € R, 7 = 0,1,2, and X is assumed to be included
inX° = {x € R* | d]z +djp > 0, i = 1,2}. The product of two affine
functions appearsin many applications such as microeconomics[4], bond portfolio
optimization [8] and geometrical optimization [11, 14] and so forth (see[10, 17]).
In[15, 24], we proposed abranch-and-bound a gorithm for generating an e-optimal
solution. Wereduced (1.2) to aproblem of minimizing aunivariate function, whose
values we computed by solving convex programs. In [16], we extended this idea
and solved more general classof problemsthan (1.2). In[20], Thach et al. converted
(1.2) into a two-dimensional concave minimization problem and applied an outer
approximation algorithm.

Asregardstheproblem (1.1), Pferschy and Tuy devel oped apromising algorithm
to generate an e-optimal solution in [18]. Their algorithm based on an approach
in [21] consists mainly of two procedures. the first one moves from vertex to
vertex along edges of X and finds a local maximum z'; the second one checks
the e-optimality of 2’ by minimizing the constraint function f. Due to the rank-
two monotonicity, one can minimize f very efficiently using any one of parametric
simplex algorithms, e.g. proposedin[9, 13, 23]. If =’ turnsout not to be an e-optimal
solution, acutting planeconstraint ¢« > ¢"«’ + ¢ is added to exclude those points
with objective function valueslessthan c"a’ + €. Our algorithm contrasts with the
method by Pferschy and Tuy in two points: using no cutting planes and yielding a
globally optimal solution within finitely many steps.

The organization of the paper is as follows. In section 2, we parametrize (1.1)
by introducing a vector £ of two auxiliary variables. We show that an optimal
solution to the resulting linear program solves (1.1) only if £ liesin some set =*
associated with the boundaries of X and Y. In section 3, to search each connected
subset of =*, we apply a parametric dual simplex algorithm to the linear program.
In section 4, using this algorithm as a procedure, we locate a point providing a
globally optimal solution to (1.1) in the whole of =*. Computational results of the
algorithm are reported in section 5.

2. Parametrization of the problem

The nonconvex program we consider in this paper is
maximize ¢’z
[P] | subjectto Az =b, = > 0,
f(x) <0,

where A € R™*" b € R™ and ¢ € R". We assume that

X={zeR"|Az =0, z >0}
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isanonempty and bounded subset of an open convex set X° C R™. The constraint
function f : R" — R is continuous and strictly quasiconcaveon X°, i.e. for each
x,y € X° with f(z) # f(y) we have

f(L=XNx+ \y) > min{f(z), f(y)} forany XA € (0,1). (2.1

We also assume f to possess rank-two monotonicity on X ° with respect to linearly
independent vectorsds, dy € R™ [12, 18, 23]. Namely, for each z, y € X°,

dle < dyfori=12impliestha f(z) < f(y). (2.2)
Let
Y = {z € X°| f(z) < O}.

The feasible region of [P], denoted by X NY, is the difference of a polytope X
and an open convex set X° \ Y. If we remove the last constraint f(z) < 0, we
have an ordinary linear program:

[Pl maximize{c'z |z € X},

which has an optimal solution z because X is nonempty and bounded. If £z € Y,
then z is globally optimal to [P]. To exclude such a trivial case, we assume
throughout the paper that

max{c'z |z € X} >max{c'z |z € X NY]}. (2.3

REMARK. Condition (2.3) can be checked easily. Let X = X N {z € R" |
c'z = c'z}. Then X contains no points satisfying f(x) < 0if and only if (2.3)
holds. Therefore, we have only to minimize f(x) over X. Due to the rank-two
monotonicity of f, this can be done by parametrically solving

minimize (1— \)d]x + \dJz
subjectto Az =b, c'z =c'z, = >0,
and evaluating f at the vertices encountered (see [23] for further details).

Let us denote by 9Y the set of boundary points of Y relative to the topology
induced on X°. Since f is continuous and strictly quasiconcave, the level surface
Lo = {z € X° | f(z) = 0} coincides with either Y or the upper level set
Ly ={x e X°| f(x) > 0} (seee.qg. Proposition 3.31in[1]). If Lo = L, then

Y={xeX°| f(x) <0} = Lou{z e X°| f(x) <0}
=L U{xeX°|f(x) <0} =X",
which contradicts (2.3). Hence, we have
Y ={x € X°| f(x) =0}. (2.9

Wealso denote by S(X') the one-dimensional skeleton of X, i.e. theunion of edges
and vertices of X. Under condition (2.3), we have the following theorem, which
holdsfor linear programs with a general reverse convex constraint as well:
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THEOREM 2.1. If XNY # ), then X NOY containsall globally optimal solutions
to [P], at least one of which lieson S(X) N oY

Proof. Followsfrom Corollary 2.1 in Tuy [21] and Proposition 1X.11 in Horst
and Tuy [7] (seedso[6, 22]). O

Thevectorsd; and dy characterizing the constraint function f transform X and
X° respectively into

= = {(d]e.d}2) | = € X},

[1]

° = {(d]z,d]z) | 2 € X°}.
In the space of =°, we can have an insight into the rank-two monotonicity of f.

LEMMA 2.2. There exists a function ¢ : R*> — R which is continuous, strictly
guasiconcave on =° and satisfies the following:

f(z) = g(dle,dz) for = € X°, (2.5)

9(§) <g(n)it§,neE>and€ <. (2.6)
Proof. If f isnot expressed as (2.5), there are two distinct points 2! and 22 in
X° such that

dlzt =dlz? i=1,2 f(z')# f(z?).

We may assume without loss of generality that f(z!) < f(«?). Then it follows
from (2.2) that

3i, dlz! < d]z?

which is a contradiction. Hence, (2.5) holds for some function g : R? — R.
Let £, € E°. Also, let z and y be pointsin X° satisfying ¢ = (d]x, d}x)
andn = (d]y, dly), respectively. If £ <, then

9(&) = f(z) < f(y) = g(n)
and (2.6) isyielded. If g(&) < g(n), by the strict quasiconcavity of f we have
g(1=XE&+An) = f(1= Nz + Ay) > f(z) = g(&§), VA€ (0,1),

which implies the strict quasiconcavity of g on =°. The continuity of g can easily
be checked. O

By exploiting the function g and by introducing avector £ of two auxiliary variables
&1 and &, we can transform [P] into an equivalent form:
maximize ¢'x
[MP] | subjectto z € X, g¢(&) <0,
diz = ¢, diz =&

The following is an immediate consequence:
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LEMMA 2.3. If (z*, £*) isan optimal solution to [MP], then =* solves[P].

Let
H={{e="[g(§) <0},

and let 9H denote the boundary of H relative to =°. In the same way as we have
seen for Y, the strict quasiconcavity of ¢ leads to

OH ={§ € E" | g(§) = 0}.

Note that the slope of the tangent to dH is always nonpositive by the mono-
tonicity property (2.6). We also see for 2 € X° that x € 9Y if and only if
€ = (dlz,d}x) € OH. If wefix the values of & and &, in [MP)], we have alinear
program:

maximize ¢'x
[P(¢)] | subjectto x € X,
dix =&, dyz = &.

Wereferto & asanactivepointif [P(¢)] isfeasibleand € liesonoH. Let=* = ZnoH
and let z* (&) be an optimal solution to [P(£)] if & € E. Then the observations
made so far are summarized into the following:

THEOREM 2.4. Let z* = z*(¢*) be a point which maximizes ¢"z*(¢) over all
£ € E*. Then z* isa globally optimal solutionto [P].

Problem [P] can therefore be solved if we solve the linear program [P(£)] as
varying £ over al active points. This could be done rather easily if the curve
OH is parametrized by a single parameter, e.g. an explicit function ¢ such that
& = (&) isknown for & = (&1, &2) € OH. However, such afavorable situation
is not expected in general. What is even worse, the set =* of active points may not
be connected.

In the rest of the paper, we impose a nondegeneracy assumption for the sake of
simplicity.

ASSUMPTION 2.1. Problem [P] satisfies the following three conditions:

(i) Matrix A has full rank. Any subset of columns of [A, b] has full rank if the
corresponding submatrix of A has.

(i) Any submatrix of [AT, ¢, d1, dy] hasfull rank if the corresponding submatrix
of AT has.

(iii) Novertices of X are boundary pointsof Y.

Condition (i) implies that the polytope X has no degenerate vertices; condition (ii)
implies that [P(£)] has a unique optimal solution z*(&) if it exists. We also see
from Theorem 2.1 that no vertices of X are optimal to [P] under condition (iii).
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3. Search for alocally best active point

We have seen from Theorems 2.1 and 2.4 that a globally optimal solution * to
[P] will be found if we enumerate al £ € E* such that *(£) € S(X). To state
this systematically, let us observe the relationship between the active points and
the skelton of X alittle more fully.

Let

~ Al b 0 0

A=|dl|, b=|0]|, et=|1]|, e2=|0].
d} 0 0 1

Given an active point £°, let us consider the linear program

maximize ¢’z
subjectto Az = b — el — e%5, = > 0.

[P(£°)] ‘

Let Bg € R™+2)x(m+2) pe gn optimal basis matrix and let

x
e [27] -2
N

denote the corresponding partitioned matrix and vectors. We then have an optimal
dictionary of [P(¢9)]:

CB

[B07 NO] = A7 cN

b —e {g_) ézfg — NQ:DN

B pr—
=ch(b— &% — e%9) + e\ zy,

(3.1)

where
No= Bg'No, b= By, ek = (ck —chNo), € = Bylel, i=12

Note on dictionary (3.1) that at most one component of b — &1¢? — &2¢9 is zero
and the rest are positive by Assumption 2.1.
Asis well known (see e.g. [2, 3]), the basis By remains optimal to [P(&)] as
long as ¢ satisfiesb — e1¢, — &6, > 0. Let

Do = {¢ € R? | ety + %, < b).
Then ®¢ is polyhedral and bounded, since for any £ € ®o we have
min{d/z |z € X} <& <max{d]z|zec X}, i=12

Moreover, & hasanonempty interior and henceis of two-dimension evenif (3.1)
is degenerate. In fact, if the sth component of b — e¢9 — e2¢9 is zero, then for a
sufficiently small § > 0 we have

el(ed — ety + e2(ed — oe?) < b.
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Between the polygon &g and atwo-dimensional face of X exists a one-to-one
correspondence. Let

Fo={z € B" |2 = 2" (€), & € Bo}.

We immediately seethat Fy is polyhedral and bounded since it is the image of ®q
under alinear transformation from R? to R”. We can further show the following:

LEMMA 3.1. Polytope Fy is a two-dimensional face of X.

Proof. For each ¢ € @, the optimal solution =*(£) to [P(£)] lies on the
intersection of n — 2 hyperplanes defined by Az = b and z = 0. (Note that
xp € R" 2 andzy € R* ™ 2.) This, together withz’ (¢) > 0, impliesthat Fp is
afaceof X with dimensionality two at most. However, % (¢) = b—el¢; —e?¢; >
0 for £ € int®q, and besides e! and e are linearly independent. We then conclude
that dimFp = 2. O

We refer to @, a polyhedral subset of =, as a cell of = associated with the basis
Byp. Obviously, £ is a vertex of @ if and only if z*(&) is a vertex of Fp. This
implies that each & € S(®g) N OH provides a candidate *(£) € S(X) N Y for
an optimal solution to [P].

3.1. GENERATION OF A SEQUENCE OF ACTIVE POINTS

L et us proceed to the procedure for generating a sequence of active points ¢t &2,
..., each of which satisfiesz*(¢') € S(X). For aninterval Q of real numbers et

EQ)=EN{(€E|&H e} (3.2)

The procedure starts from a given active point ¢ € §(®p) N OH and visits distinct
¢’ssuccessively in Z([¢4, w]) N OH for some number @ > ¢1. The way to obtain a
starting active point £* will be discussed in the next section.

Since the cell @ is a convex polygon defined by m + 2 half planes, we can
generateall theverticesintime O(m logm) using computational geometry (seee.g.
[19]). Letnt, ..., nP, nPt1 (= ') denote the vertices of ¢ in counterclockwise
order from £1. Suppose the edge n?—n* contains apoint in Z° \ H. Then we have
either of the following under condition (iii) of Assumption 2.1:

case3.1: g((1—M)n? + \¢l) < Oforany A € [0, 1);
case3.2: g((1—M)E + Ant) < Oforany X € (0,1].

Incase 3.2, moving along S(®g) counterclockwisefrom i, wechooseas¢? the
last point where the value of ¢ is nonpositive. Let n*—n**1 be the edge containing
£2. Then

g(1=Mn'+ 1t <0, vA€0,1, i=1,....k—1,



254 T.KUNO AND Y. YAMAMOTO
and for nf—¢%-n*+1 we have
g((l - A)nk + >‘£2) < 07 VA e [07 1)7

just asin case 3.1 for nP—£1—nt. The active point £2 newly found satisfies ¢ > ¢1
and 55 < €3, butis never equal to ¢! because @ is of two-dimension.

LEMMA 3.2. Incase 3.2, no z*(¢) € S(X) with £ lying on 9H between ¢* and
£2 can be optimal to [P], except for «* (¢1) and z* (£2).

Proof. If an edge n?nt! (k < q < p) intersects OH between ¢! and £2, the
line segment £1-¢2 does not entirely lie in ®, which contradicts the convexity of
®g. Thispieceof OH istherefore included in ¢ and hasintersectionswith only the
edges n?—nt and n'—n'*t1,i = 1,... k. Suppose n"-n"** (1 < r < k) touches
OH at ¢'. Then, by Assumption 2.1 (iii), we have

g(n™) <0, g(n"*) <0, g(¢)=0.

We seefrom Lemma3.1 that z* (¢') lieson an edge connecting two verticesz* (n")
and z*(n"*1) of X. Both the vertices, however, lie in intY’, and hence neither is
optimal to [P] by Theorem 2.1. Since c¢"z*(¢') < max{c'z*(n"),cTz*(n" 1)}
holds, z*(¢') is not optimal, either. O

Let us now turn to case 3.1. If we replace ¢° by ¢ in dictionary (3.1), then for
the sth row corresponding to n?—n' we have

by — exé1 — e2¢3 = 0.

Selecting a variable to enter the basis appropriately from nonbasic variables and
performing asingle dual pivot operation, we obtain an alternative basis matrix By,
which is also optimal to [P(¢1)]. The cell ®; associated with B; shares the edge
nP—n! with ®q. Therefore, the rest of the procedure is the same as in case 3.2. If
we cannot find any entering variables, i.e.

(e*)"No > 0, (3.3)

then z* (¢1) isamaximum point of \id{z + \odJz over X, where \; = 13 —n}
and \; = i} — n1. In other words, the edge n?—n*! determines a supporting line of
= = {(d]x,d}x) | € X}; and Eisincluded in

A={(E€Z°] (A, X2)(€ — &) <O}
LEMMA 3.3. Suppose (3.3) holdsin case 3.1. Then

(i) E((&1, +00)) NOH = D if ni <1y (and n3 > 13);
(i) Z((&}, ¢+ d]) NH = () for somed > 0 otherwise.
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Proof. (i) Supposeni < n}; otherwise, the assertion is obvious. In case 3.1,
we have E((¢4,77]) N OH = 0. Let us assume that g(¢') = O for some ¢’ €
E((m,+00)). Then &’ € A, and hence we have ¢, < &7 — (A1/X2) (&) — £7) by
noting A, = n} —ni > 0. Letting ¢&” = (£1,63 — (M1/X2) (&) — &1)), we have
g(£") > 0 by the monotonicity of g. Then n?, aconvex combination of £” and ¢,
satisfies

g(n”) > min{g(¢"), (€Y} >0,

which is a contradiction.
(i) We have supposed that n?—n' contains a point, say &', in =° \ H. Taking
§ = &} — &1 leads to the assertion. O

If (i) holds in Lemma 3.3, we have to continue to search Z((£1, +o00]) for other
active points, by using the procedure which will be developed in the next section.
3.2. PROCEDURE FOR FINDING A LOCALLY BEST ACTIVE POINT

Let us summarize the procedure. It receives an active point £ such that «*(£?)
lies on some edge of X' containing apoint in X° \ Y, and then returns a number
@ > ¢} and the best active point £ in the set £([¢1, @)). Let

M =max{djz |z € X}.

procedure LOCAL (¢1);
begin B '
ji=1land§ :=¢’;

compute an optimal basis matrix B of [P(¢&7)] and the associated cell ;1
letnt, ..., nP denotethe vertices of ®; 5 in counterclockwise order from &7;
if g((1—\)¢&” + Ant) < 0forany X € (0, 1] then begin ‘
move aong S(®;_1) counterclockwise from n' and choose as ¢/ the last
point where the value of ¢ is nonpositive;
let Bj = bj_1, q)j = @j,]_ andj :=j+ l;
if cTx*(¢7) > cTz*(€) then update £ := ¢’
end;
stop := false;
while stop = false do begin ~ , ,
choose afundamental vector e suchthat (e®)" B % (b — el¢] — e¢5) = 0;
if (eS)TBj‘lej_l > 0 for the nonbasic columns N, _1 then stop := true
elsebegin
perform adual pivot operation at the sthrow in the dictionary with respect
to Bj—l;
let ®; denote the cell associated with the new basis B; and o', ..., n?
the vertices of ®; in counterclockwise order from &7;
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movealong S(®;) counterclockwisefrom n! and chooseas¢’/*1 thelast
point where the value of ¢ is nonpositive;
ji=7+1L ,
if cTx*(¢7) > cTz*(€) then update £ := &7
end

end;

if ni < nf then return (M, €)

elsereturn (¢1,€)

end;

LEMMA 3.4. Under Assumption 2.1, procedure LOCAL terminates after finitely
many iterationsand returnsa number @ > ¢1 and an active point €, which provides
the best incumbent z*(£) among all ¢ € Z([¢1, w]) N oH.

Proof. The procedure generates a sequence, (®o,) €', @1, €2, ..., &1, €,
until (e®)" B, 11Nt,1 > 0 holds. Some @ ;s may appear more than once but no £’s
do. By the convexity of =° \ H, each edge of ®;s can intersect 9H not more than
twice. Thisimplies that each edge of X' containstwo of «*(£’)s at most. Since X
has only afinite number of edges, the number of ¢’s isfinite as well. We also see
from Lemmas 3.2 and 3.3 that except for £€/sno ¢ € Z([¢1,w]) N GH can provide
an optimal solution to [P]. O

4. Search for aglobally optimal solution to [P]

To generate a sequence of active points, procedure LOCAL requires a starting
active point €1 such that 2*(¢) € S(X). In this section, we will develop two
procedures for supplying LOCAL with such an active point.
For aninterval 2 let
X(Q)=Xn{zecX°|dizecQ}

like Z(2) defined in (3.2). We simply write X (w) and Z(w) for a degenerate
interval Q = [w, w]. When searching for a starting active point, the following two
parametric linear programs play important roles:
maximize c'x minimize dix
[C(w)] subjectto z € X (w), (D) subjectto = € X (w).
Under condition (ii) of Assumption 2.1, both the problems have a unique optimal

solution unless X (w) is an empty set. Let 2%(w) and 2P (w) denote the optimal
solutionsto [C(w)] and [D(w)], respectively, and let

he(w) = djz®(w), hp(w) = diz°(w).
For any w with X (w) # (), by the monotonicity of g, we have
g(wa hD(w)) < g(wa hc((.U))
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LEMMA 4.1. Suppose X (w) # (). Then

(i) E(w)NnH=0if g(w, hp(w)) > 0;

(i) Z(w) N OH # B if g(w, ho(w)) <0< glw, he(w));

(iii) noax*(&) with ¢ € E(w) isoptimal to [P] if g(w, hc(w)) < 0.

Proof. (i) For an arbitrary ¢’ € Z(w), there is some 2’ € X (w) such that
diz' = &, Since hp(w) < dix foradl ¢ € X(w), we have 0 < g(w, hp(w)) <
g(w,dx") = g(¢&') by the monotonicity of ¢g. Hence, &’ cannot be apoint in H.
(if) Obvious.

(iii) Theoptimal solution £©(w) to [C(w)] satisfies f (2 (w)) = g(w, hc(w)) < O.
Hence, ¢ (w) isfeasible but not optimal to [P] by Theorem 2.1. Also, ¢"2%(w) >
c'z for all £ € X(w), which implies that =*(¢) is not optimal to [P] for any
¢ € Z(w). 0

Given anumber w! suchthat X (w!) # ), we can obtain an active point £* with
¢1 > w! by solving either [C(w)] or [D(w)] parametrically. We will show that no
¢ € OH with &; € (w?, ¢7) provides an optimal solution to [P].

4.1. ROLE OF PROBLEM [C(w)]

Let us consider
case4.l: X((wlwl+d))NY #(foranys > 0.

Aswill be seen later, the procedure below is applied to this case only when (iii) of
Lemma4.1 holds for w = w?; therefore, we suppose here that g(w?, he(w?)) < 0.

If we increase the value of w from w? and solve [C(w)] by using a parametric
right-hand-side simplex algorithm, asequenceof intervals[w?!, w?], ..., [w?, w1,
and associated bases BY, ..., B}, will be generated, where B € RIm+Dx(m+1) s
optimal to [C(w)] for all w € [w', w1 and Wit = M (= max{d]z | = € X}).
Foreachi = 2,...,q + 1, the optimal solution ¢(w’) isavertex of X. Thereare
two subcases under condition (iii) of Assumption 2.1:

g(wi,hc(wi)) <0, i=2,...,q+1, (4.2)
g(w' he(w') <0, i=2,....,k(<q), gt hc(wth)) >0 (42

LEMMA 4.2. In both (4.1) and (4.2), i
g(w' he(w') <0, i=2,...,0(<q+1),

then no z* (¢) with ¢ € Z((w?, w']) isoptimal to [P].
Proof. We see from Lemma 4.1 (iii) that no =*(¢) with ¢; € {w?,...,w'} is
optimal. If thereis an active point ¢’ with ¢ € (w*, w'™?), then

max{ezC(w'), 2wt )} > T2C(e)) > cTw, Ve € X ().

Hence, no ¢ € Z((w?, w!]) provides an optimal solution. 0
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If (4.2) holds, we choose as £* an intersection of (w, he(w))—(wF T2, he(wFT1))
and OH. By the convexity of Z° \ H, we can show that £1 is a unique intersection.
From Lemma 4.1 (jii), no ¢ € Z((w*,¢1)) provides an optimal solution. We then
have z* (&) = £©(¢}), which lies on an edge € (w*)—2C(w**1) of X. Since one
end of tlhis edgeisapointin X°\ Y, procedure LOCAL can start from the active
point .

The procedure for finding a starting active point in case 4.1 is summarized to
the following:

procedure START1(w?l);
begin
1= 1and stop := falsg
while stop = false do begin
compute a basis matrix B, and a number w'™ such that B! is optimal to
[C(w)] fordl w € [, wtY];
if g(w™t, he(w'1) > 0then begin
let £* betheintersection point of (w’, hc(w?))~(w't?, he(w'tt)) and OH;
stop := true
end
dseif w'tl = M then € := (W't he(w'?)) and stop := true
elsei:=i+1
end;
return ¢*
end;

4.2. ROLE OF PROBLEM [D(w)]
The rest to be considered is
case4.2: X((wl,w!+4]))NY = for somes > 0.

Note from Lemma 3.3 that we have case 4.2 at w' = @ if LOCAL returns@ < M.
As before, we solves [D(w)] for al w € [w?, M] and generates a sequence of

intervals [w!,w?], ..., [w?,w? 1], where w?+t1 = M. There are two subcases
again:

g(w', hp(W)) >0, i=2,....¢4 +1; (4.3)

g(wia hD(wZ)) > 07 1= 27 ey k (S q,)a g(wk+17 hD(wk+l)) <0. (44)
LEMMA 4.3. In both (4.3) and (4.4), if

g(wiahD(wi)) > 07 I = 27 .. -7€ (S C], + 1)7

then E((w!, w]) NH = 0.
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Proof. For each i = 2,...,4, the segment (w’, hp(w?))—=(w*2, hp(wit?)) is
included in the open convex set =° \ H. Hence, g(w, hp(w)) > O forany w €
[w’, w**1]; and the assertion follows from Lemma 4.1 (i). O

If (4.4) holds, we choose as ¢ an intersection of (w*, hp (w*))—(w*+1, hp (wWF*1))
and OH. Then we have z* (¢1) = 2P (¢1) lying on an edge P (w*)-xP (w*+1) of
X. Asin case 4.1, the intersection &' is unique, and no ¢ € Z((w*, £1)) provides
an optimal solution to [P].

The procedure for finding a starting active point in case 4.2 is as follows:

procedure START2(w?l);
begin
1= 1and stop := falsg
while stop = false do begin
compute a basis matrix B! and a number w**! such that B!’ is optimal to
[D(w)] for dl w € [w', w1
if g(w™*, hp(wt?)) < 0then begin
let ¢! be theintersection of (w’, hp(w?))—(w' 2, hp(w'1)) and OH;
stop := true
end
dseif w't! = M then ¢! := (w*1, hp(w't!)) and stop := true
elsei:=i+1
end
return ¢*
end;

4.3. ALGORITHM FOR FINDING AN OPTIMAL SOLUTION TO [P

We are now ready to present the whol e algorithm for computing a globally optimal
solution z* to [P]. It consists of procedure LOCAL in section 3.2 and the above
two procedures.

algorithm GLOBAL;
begin {phase 1: find aninitial active point £1}
let 2 ;= argmin{d]z | ¢ € X} andw’ := d]z*;
if g(w!, ¢"x') < Othen call START1(w?) to obtain ¢!
else call START2(w?) to obtain £
if ¢ < M then
begin {phase 2: find aglobally optimal solution * to [P]}
¢ := ¢! and stop := false;
while stop = false do begin
call LOCAL (¢1) to obtain (w, €);
if cTx*(€) > cTx*(¢*) then update £* = &;
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if @ = M then stop ;= true
else begin
call START2(w) to obtain £1;
if && = M then stop := true
end
end;
z* =t (€")
end
end;

We should note that procedure STARTL1 is not called in phase 2. We see from
Lemma 3.3 that case 4.2 occurs at w! = @ whenever LOCAL returns w < M.
Therefore, after calling LOCAL, algorithm GLOBAL does not need START1 any
more.

THEOREM 4.4. Under Assumption 2.1, algorithm GLOBAL terminates after fi-
nitely many iterations and yields a globally optimal solution «* of [P] if it exists.

Proof. By Assumption 2.1 (ii), both proceduresSTART1 and START2 arefinite
and either of them returns a point £* in phase 1. From Lemmas 4.2 and 4.3, no
¢ with &, < ¢ provides an optimal solution. If ¢1 attains M = max{djz | = €
X}, then it must be yielded by START2(w?) under condition (2.3). In that case,
g(w, hp(w)) > Ofor al w € [wt, M] and hence [P] has no feasible solutions by
Lemmad4.1 (i).

In phase 2, procedure LOCAL returns anumber @ > ¢1 and the best incumbent
€inZ([¢},w]) N OH. Unlessw reaches M, case 4.2 occursat w! = w and START2
is caled to search Z((w, M]) for an alternative ¢ with ¢§ > . In this way,
LOCAL and START2 scan adjacent intervals covering H* alternately from &1 =
min{d"x | £ € X} to & = M inthe plane of Z°. Some of the intervals scanned
by LOCAL may be degenerate but none of those by START2 are. This, together
with Lemma 3.4, implies that phase 2 of GLOBAL is finite and yields a globally
optimal solution * = *(£¢¥) to [P]. O

4.4. NUMERICAL EXAMPLE

Before concluding this section, let us illustrate algorithm GLOBAL with the fol-
lowing small instance:

maximize x3
subjectto 5z1 + 10z, + 523 < 28
8z1 + 4xr + 53 < 28
—130z1 — 40z + 9023 < 9
leOa xZZoa 1'320
(3z1 — 2+ 3)(—z1 + 322+ 4) — 18 < 0.

(4.5)
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X2

3x;-x2+3=0

Sx1+10x; +5x3=28

8X1 +4X2 +SX3 =28

x*(g% -x1+3x,+4=0

x"(%) xX*(g%)

-130x; -40x, +90x3=9

Figure 1. Three-dimensional example (4.5) of [P].

Let

X° = {(z1,22,73)" | 3w1 — 22+ 3> 0, —z1 + 322+ 4 > O},
Then the product of two affine functions

f(z) = (Bz1 — 22+ 3)(—z1 +322+4) — 18

is strictly quasiconcave (see e.g. [1]) and has rank-two monotonicity on X° with
respecttod; = (3,—1,0)" andd, = (—1,3,0)". We also see from Figure 1 that
X ° includes the polytope

Xz{:ce]R?’

5z1 + 1022 4+ 5z3 < 28, 8xr1 + 4xy + 513 < 28
—130z1 — 4022+ 9023 <9, 21 >0, 2o >0, z3>0 [~

Thefunction g inLemma2.2is

g(&) = (1+3)(&2+4) — 18

In phase 1, we first solve a linear program: minimize{3z1 — z | € € X}.
Then we have 2! = (0.000, 2.800, 0.000) " asits optimal solution. Since f () =
—15.520 < 0 and case 4.1 holds at w' = d] ' = —2.800, we need to solve the
following problem in order to obtain an initial active point £*:

maximize 3
subjectto z € X (4.6)
3r1— 12 = w.

Procedure START1 solves (4.6) parametrically by increasing the value of w from
—2.800, and returns the first active point £* after two pivot operations:

¢l = (~1.131,5.631); z*(¢') = (0.280,1,970,1.379)".
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224

X1 Xs

Figure 2. The cell &, associated with the dictionary (4.8).

In phase 2, we solve the following problem as changing &:

maximize 3
subjectto =z € X 4.7
3r1— 22 = &1, —11+ 312 = &2

The optimal dictionary of (4.7) at £ = (—1.131,5.631) isasfollows:

22 = 0.000 + 0.125¢; + 0.375¢,
75 = 27.500 — 6.486¢1 — 4.236¢, + 0.056z¢
24 = 27.500 — 6.111¢; — 6.111¢, + 0.056z¢
w3 = 0.100 4 0.597¢; + 0.347¢, — 0.011z6
21 = 0.000 + 0.375¢; + 0.125¢,

z = 0.100 + 0.597¢; + 0.347¢, — 0.011z6,

where z4, x5 and zg are slack variables. Hence, we define
0.125¢; + 0.375¢ > 0,  6.486¢1 + 4.236¢, < 27.5
Q=<¢€€ R?

(4.8)

6.111¢; + 6.111¢, < 27.5, 0.597¢; + 0.347¢, > —0.1
0.375¢1 + 0.125¢, > 0

(see Figure 2). We obtain the second active point £2 by computing the intersection
of g(¢) = 0and edge n®-n? of ®;. Performing asingle dual pivot operation at the
first row of (4.8) corresponding to n°—n°, we have

£2 = (3.000, —1.000); z*(¢2) = (1.000,0.000,1.544)".

Since there is no active point £ with £&; € (3.000, 3.000 + 4] for sufficiently
small § > 0, case 4.2 holds and we have to solve
minimize —z1 + 3>
subjectto = € X (4.9)
311 — 20 = w.
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Procedure START 2 solves(4.9) asincreasing thevalue of w from 3.000, and returns
the third active point:

¢3 = (6.000, —2.000); x*(¢£°) = (2.000,0.000,2.400)".

Starting from ¢2, procedure LOCAL again solves (4.7) and generate the | ast active
point:

£* = (9.857,-2.600); z*(¢*) = (3.371,0.257,0.000)".

The maximum of z is attained at *(¢£°).

5. Computational experiments

We will report computational results of testing algorithm GLOBAL. We coded
GLOBAL and the algorithm proposed by Pferschy and Tuy [18] (abbr. P-T) in
double precision C language, and tested them on a microSPARC Il computer (70
MHz). The tolerance ¢ required by algorithm P-T for computing an e-optimal
solution was fixed at 10~°.

The test problem was the following subclass of [P]:

maximize ¢’z
subjectto Az <b, £ >0 (5.2)
(d{z — dio)(d3x — dao) — doo < O,

wheree, d; € R" (1 = 1,2),dio € R (i = 0,1,2),b € R™ and A € R™*",
To ensure that f(z) = (d{z — dio)(dix — doo) is strictly quasiconcave and
has rank-two monotonicity on X = {& € R* | Az < b, > 0}, we put
—djx < —dyp — 107% and —d}x < —da — 107° in the first and second rows
of Az < b, respectively. Components of ¢, d;s and A except the first two rows
were drawn randomly from a uniform distribution over [—1.000, 1.000], and those
of b except the first two components and d;os were from [0.000, 1.000]. The size
of problems ranged from (m,n) = (100, 120) to (250, 300). For each size we
selected ten instances which were feasible and had no trivial solutions.

Table | shows the average performance of the two algorithms. For each size
of (m,n), the average number of pivot operations and the average CPU time in
seconds (and their respective standard deviations in the brackets) needed to solve
ten instances are listed. The column labeled Type 1 gives the number of primal
pivot operations performed in phase 1; the column labeled Type 2 gives that of
dual pivot operations performed by procedures START1 and STARTZ2; and the
column labeled Type 3 givesthat of dual pivot operations performed by procedure
LOCAL.

We seefrom these results that algorithm GLOBAL israther practical compared
with algorithm P-T for randomly generatedinstancesof (5.1). In particular, thetotal
number of pivot operations required by GLOBAL is only about 25 % of that by
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Tablel. Computational results for (5.1).

agorithm GLOBAL algorithm P-T
mxmn # of pivots CPU time #of pivots CPU time
typel type2 type3 totd
100 x 120 169 26.8 47.0 90.7 3.970 334.8 8.612
(7.2 (19.0) (28.2) (22.1) (1.425) (260.3) (6.922)
150 x 120 21.3 253 61.8 108.4 7.960 456.2 19.888
(6.0) (16.6) (205) (26.5) (2.393) (339.7) (15.156)
150 x 150 19.2 44.4 56.0 119.6 10.433 519.3 26.092
(10.3) (34.4) (225) (26.9) (3.856) (574.1) (30.198)
150 x 180 381 51.1 71.0 160.2 13.662 774.5 41.903
(15.7) (321) (321) (46.1) (4.328) (1015.9) (56.338)
200 x 180 28.3 64.1 574 149.8 19.208 402.1 31.275
(105) (344) (28.8) (36.9) (7.882) (552.2) (44.087)
200 x 200 24.3 44.8 94.6 163.7 24.257 668.2 56.405
(10.5) (38.7) (37.7) (322 (6.684) (827.7) (71.312)
200 x 220 231 452 814 149.7 22.617 586.8 49.437
(13.1) (37.3) (33.00 (414 (10.599) (608.9) (53.267)
250 x 220 29.0 64.4 81.6 175.0 33.970 752.9 88.732
(9.6) (46.5) (431 (615) (14.929) (770.5) (92.617)
250 x 250 37.9 90.7 92.0 220.6 45.585 936.4 117.728
(16.8) (56.2) (25.5) (65.2 (20.188) (1141.2) (147.679)
250 x 300 412 70.8 91.0 203.0 45.193 836.5 118.395

(202) (383) (560) (59.2)  (17.018) (1085.0)  (159.672)

algorithm P-T. Moreover, the variance of the former isfar lessthan the latter. Since
algorithm P-T discards|ocal maximaby cutting off a portion of the feasibleregion,
unfortunate cuts sometimes delay the convergence considerably. In contrast to this,
algorithm GLOBAL uses no cuts and hence the convergence is relatively stable.
It should also be emphasized that GLOBAL yields rigorous optimal solutions but
not approximate ones.
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